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It was previously observed by Krug et al. (J. Fluid Mech., vol. 765, 2015,
pp. 303–324) that the surface area Aη of the turbulent/non-turbulent interface (TNTI)
in gravity currents decreases with increasing stratification, significantly reducing the
entrainment rate. Here, we consider the multiscale properties of this effect using direct
numerical simulations of temporal gravity currents with different gradient Richardson
numbers Rig. Our results indicate that the reduction of Aη is caused by a decrease
of the fractal scaling exponent β, while the scaling range remains largely unaffected.
We further find that convolutions of the TNTI are characterized by different length
scales in the streamwise and wall-normal directions, namely the integral scale h
and the shear scale lSk = k1/2/S (formed using the mean shear S and the turbulent
kinetic energy k) respectively. By recognizing that the anisotropy implied by the
different scaling relations increases with increasing Rig, we are able to model the Rig

dependence of β in good agreement with the data.
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1. Introduction

It has long been established that in partially or fully unconfined turbulent flows,
such as jets, wakes and boundary layers, regions of turbulent and non-turbulent flow
are separated by sharp and strongly contorted interfaces (e.g. Corrsin & Kistler 1954;
Da Silva et al. 2014). Interest in these turbulent/non-turbulent interfaces (TNTIs) has
remained high since they play a crucial role in setting the entrainment rate, which is
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an important parameter in many practical applications. In particular, when following
the conventional approach of defining the instantaneous TNTI using an appropriate
threshold on enstrophy ω2, where ω denotes the norm of the vorticity vector, a local
entrainment velocity describing the motion of the TNTI relative to the fluid can be
computed from vn≡−|∇ω2|−1 Dω2/Dt (Holzner & Lüthi 2011). The entrained volume
flux is then given by the surface integral

Qω ≡
∫

Aη

vn dA= 〈vn〉Aη, (1.1)

where 〈·〉 denotes an average over the surface area of the TNTI, Aη. While vn is widely
observed to be of the order of the small-scale (Kolmogorov) velocity uη (Holzner &
Lüthi 2011), the multiscale aspect of turbulent entrainment is reflected in Aη, which
is set by eddies distorting the TNTI across the full range of scales.

The flow case under consideration here is a gravity current originating from a
continuous release of heavier fluid along a sloping bottom into uniform surroundings.
This problem was originally investigated by Ellison & Turner (1959), who found that
the entrainment parameter E is a decreasing function of the Richardson number, Ri,
which represents the ratio of the competing forces of stratification and shear (see § 3
for exact definitions). A sound understanding of how E varies depending on the flow
parameters is important, e.g., in the study of turbidity currents, where surprisingly high
runout lengths have been linked to very low entrainment rates (Sequeiros et al. 2010;
Sequeiros 2012; Kneller et al. 2016). In a recent effort to elucidate this behaviour of
E in relation to properties of the TNTI, Krug et al. (2015) showed that the reduction
of E is in significant part due to a decrease of Aη with increasing Ri, whereas 〈vn〉/uη
remains largely unaffected. Their experimental findings have since been confirmed by
the direct numerical simulations (DNS) of van Reeuwijk, Krug & Holzner (2017). A
key to understanding the entrainment rate in gravity currents – and quite possibly also
to modelling it – therefore lies in understanding the behaviour of Aη. Hence, the goal
of the present study is to investigate stratification effects on Aη using a multiscale
approach. The analytical tools necessary are available from numerous related studies
on flows without a stable density stratification, which are summarized in the review
of Sreenivasan (1991). Their most relevant result is the prediction of fractal scaling in
the inertial region based on the proposal of scale invariance for turbulent geometries
by Mandelbrot (1982). Fractal scaling for the TNTI implies power-law behaviour
according to Sreenivasan, Ramshankar & Meneveau (1989),

Aη = A0(li/lo)
2−Df , (1.2)

where li and lo are the inner and outer cutoffs of the inertial scaling range respectively.
Theoretical predictions yield Df = 7/3 for the fractal dimension, in good agreement
with recent high-Reynolds-number (Re) experiments by de Silva et al. (2013), who
find Df ≈ 2.3–2.4 for the TNTI in turbulent boundary layers. It should be noted that
others (e.g. Dimotakis & Catrakis 1999) argue that Df should be scale-dependent.
However, a significant scale separation is required to address this issue, and this will
not be the focus here. The goal of the present study is to ascertain how the previously
observed decrease of Aη/A0 with increasing Ri is reflected in changes of the fractal
scaling parameters li, lo and Df compared with the unstratified case where Ri= 0. To
this end, we make use of DNS of a temporal version of the gravity current problem
previously introduced in van Reeuwijk et al. (2017). Before presenting our results
in § 3 followed by a discussion in § 4, details of the simulations are given in § 2. Our
conclusions are summarized in § 5.
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Label α (deg.) Ri0 Re0 R̂eλ =
√

15/(νε̂)k̂ NxNyNz LxLyLz/h3
0

GC1 20 0.04 3700 141 15362 × 1152 202 × 10
GC2 10 0.11 3700 107 15362 × 1152 202 × 10
GC3 5 0.22 3700 72 15362 × 1152 202 × 10
WJ — 0 3700 115 15362 × 1152 202 × 10

TABLE 1. Simulation parameters: Ni and Li denote the number of grid points and the
domain size along the i-direction respectively; subscript ‘0’ marks quantities at the start
of the simulation. Results for R̂eλ are averaged over 100< t̃< 120.

2. Simulations

In the temporal gravity current simulated here, the flow evolves in time (instead
of along the streamwise coordinate as in the spatial case) due to periodic boundary
conditions not only in the spanwise but also in the streamwise direction. A detailed
discussion of the concept and the numerical configuration used was recently provided
in van Reeuwijk et al. (2017), who also confirmed that the aforementioned findings
of Krug et al. (2015) transfer to the temporal problem. The simulations presented
here were carried out using a fourth-order accurate discretization of the Navier–Stokes
equations in the Boussinesq approximation (Craske & van Reeuwijk 2015). The flow
is initialized with uniform distributions of streamwise velocity u0 and buoyancy
b0 up to a height h0 above the bottom wall (located at z = 0), and is statistically
homogeneous in the streamwise (x) and spanwise (y) directions. The buoyancy vector
is given by b = bĝ, where b is a scalar with Schmidt number Sc = 1 and the unit
vector ĝ is tilted at an angle α with respect to the vertical (i.e. the z axis) in
order to simulate a sloping bottom. Hence, the component b sin(α) drives the flow
along x, while b cos(α) is causing a stable stratification in the wall-normal direction.
Throughout this paper, we make use of the top-hat definitions

uTh=
∫ ∞

0
u dz, u2

Th=
∫ ∞

0
u2 dz and bTh=

∫ ∞

0
b dz= B0, (2.1a−c)

where u is the streamwise velocity (the overline indicates averaging in wall-parallel
planes; the corresponding fluctuations are given by u′ = u − u) and the buoyancy
content B0 is a conserved quantity in the temporal problem (van Reeuwijk et al. 2017).
The velocity components along the y- and z-axes are denoted by v and w respectively.
With the above definitions, we can form a bulk Reynolds number Re= uTh/ν, where
ν is the kinematic viscosity, and a Richardson number Ri = B0 cos(α)/u2

T . Table 1
summarizes the parameters of the simulations employed in this study. For the gravity
currents (labelled GCs in the following), Ri0 is varied by changing the inclination
angle α while keeping the integral forcing sin(α)B0 in the x-direction constant. In
addition, we ran a simulation with the buoyancy term switched off, resulting in an
unstratified (temporal) wall jet (WJ) that is driven by initial momentum only. Apart
from the bulk flow behaviour, where the whole domain was used, results will be
based on averages over six independent xz-planes, which are spaced equally in the
y-direction, amounting to 250 snapshots over a period of 120 h0/u0.
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FIGURE 1. Temporal evolution of (a) top-hat thickness h, (b) top-hat velocity uT , (c) Ri
(thick) and Rig (dashed-dotted lines) and (d) entrainment coefficient E. (e) Mean profiles
of streamwise velocity at t̃= 100, with the grey shading indicating the averaging band for
turbulence quantities. The legend in (e) applies to all panels; the colour scheme is chosen
such that darker shades of red correspond to larger Ri.

3. Results

The bulk flow behaviour in terms of h and uT is presented in figure 1 as a function
of the dimensionless time t̃ = tu0/h0. After an initial transient, these quantities are
observed to evolve conforming to their inviscid scaling h ∝ t̃ and uT ∝ const. for
GCs, and h ∝ t̃1/2 and uT ∝ t̃−1/2 for the WJ (van Reeuwijk et al. 2017), with a
clear trend of decreasing h and increasing uT with increasing Ri0. As figure 1(c)
shows, Ri asymptotes towards different constants for t̃ & 90 for the GC simulations.
In accordance with previous findings, this relates also to different values of the
entrainment parameter E shown in figure 1(d), which is defined as E = u−1

T dh/dt
for temporal flows. In equilibrium flow, both Ri→ const. and E→ const., such that
figure 1(c,d) provides further indicators that equilibrium has indeed been reached in
the simulations. We further note that E for all GCs is significantly reduced compared
with the WJ, for which Ri= 0 at all times.

The basic structure of the flow can be inferred from the profiles of u displayed in
figure 1(e). Starting from the wall where u= 0, the velocity increases sharply within
the boundary layer up to a maximum at z/h≈ 0.15, followed by a decrease back to
zero at z/h ≈ 1.5. In the region 0.3 < z/h < 1.2, this decrease – and similarly the
one for b (not shown) – is linear to a very good approximation. In order to exclude
the influence of the near-wall region, where wall scaling prevails, from entering the
statistics, we will restrict averages to this region in the following and denote this by
using ˆ(·). As indicated in the figure, ĥ=0.9h and û≈1.1uT , and we define the gradient
Richardson number as R̂ig = (N̂/Ŝ)2, where N̂2 = db/dz is the buoyancy frequency
and Ŝ = du/dz is the shear. Results for R̂ig are also included in figure 1(c) (dashed-
dotted lines), and it is obvious that the behaviour resembles that of Ri with slightly
lower magnitudes. Furthermore, we point out that even though there are fundamental
differences between the WJ and the GCs, the collapse in figure 1(e) indicates that the
structures of the flows are indeed very similar.

The position of the TNTI is detected using a threshold on the enstrophy ω2=ωiωi,
where ωi is the vorticity vector. For simplicity, a single threshold value ω2

thr = 3 ×
10−5u2

0/h
2
0 is chosen here at all times and for all flows. Two sample ω2-snapshots in

figure 2(a,b) for WJ and GC2 provide evidence for the suitability of this criterion.
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FIGURE 2. Snapshots of the enstrophy distribution in (a) WJ at t̃= 60 and (b) GC2 at t̃=
90, with the times selected such that h= 2.75 in both flows. Black solid lines indicate the
position of the TNTI along with isocontours at 100ω2

thr (dash-dotted) and 0.01ω2
thr (dotted).

(c) Probability density function (p.d.f.) of log10 ω
2 at t̃ = 120 and (d) squared ratio of

interface lengths (LGC/LWJ)
2 (thick lines) along with EGC/EWJ (dash-dotted lines). The

legend from figure 1(e) applies.

These figures further demonstrate that the location of the TNTI hardly changes even
when varying the threshold value over a range of four orders of magnitude in total.
Consequently, the results presented in the following are also largely independent of
the exact choice of ω2

thr. Further, figure 2(c) presents a probability density function
of log10 ω

2 at the end of the simulations, when the differences between the flows are
maximal. The distribution is bimodal, with the peaks corresponding to the turbulent
region (high ω2) and an essentially irrotational region (low ω2). From this figure, it
is clear that the threshold is suitably chosen to differentiate between the two regions.

As a next step, we focus on the multiscale properties of the interface. For the ease
of data handling and computation, instead of considering Aη itself, we will consider
its 2D surrogate in the following, which corresponds to the length L of the TNTI
contours in snapshots such as those shown in figure 2(a,b). These snapshots were
chosen such that h is nominally the same, and it is obvious that in this case LWJ
is significantly larger than LGC2. In order to relate results from xz-snapshots to Aη,
it has to be assumed that interface convolutions in the yz-plane are similar, which
has been shown to be valid for wall jets (Paizis & Schwarz 1974). Accordingly, we
plot (LGC/LWJ)

2 as a surrogate for Aη,GC/Aη,WJ in figure 2(d). We note that this ratio
reaches values as low as 0.5, which is of the order of the relative reduction in E
also plotted in the figure. This observation again emphasizes the important role the
reduction of Aη plays in reducing E.

Since the quantity of interest here is the length L at different scales, we investigate
the fractal scaling of the TNTI based on filtered fields similarly to de Silva et al.
(2013). Before filtering, we transform ω2 to the binary field I, where I = 1 if
ω2 > ω2

thr and I = 0 otherwise. As illustrated in figure 3, this field is then filtered
according to Ĩ = ∫ I(x − x′)G(x′) d2x′, with G denoting the kernel of a square
box-filter with filter width λ. In the filtered fields, the TNTI is then found where
Ĩ = 0.5. The main advantage of this procedure as opposed to filtering ω2 directly is
that it approximately preserves the mean interface position. Based on a self-similarity
argument (van Reeuwijk & Holzner 2014), this is a prerequisite to expecting fluxes
across the TNTI evaluated at different scales to be equal, i.e. Qω(λ)=Qω.
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FIGURE 3. (a) Illustration of the filtering procedure applied to the ω2-snapshot shown in
figure 2(a). The blue line represents the TNTI at the respective filter scale. (b) Interface
length L(λ) at t̃ = 60 for all simulations. The black solid line corresponds to the fit for
WJ according to (3.1).

The equivalent of (1.2) for L evaluated at a filter scale is given by L(λ) ∝ λ−β ,
where β ≈ 0.3–0.4 (de Silva et al. 2013). Sample results for L(λ) are depicted in
figure 3(b), where λ is normalized by the Kolmogorov scale η̂= (ν3/ε̂)1/4 and ε̂ is the
rate of turbulent dissipation. The curves level off at small and large λ, which relate to
the outer and inner cutoffs respectively. However, the transitions are smooth, such that
the determination of li and lo is not straightforward. Given the limited range of scales
in the simulation, the slope β will also vary depending on the chosen scaling range. To
determine the fractal scaling parameters nevertheless in a consistent and unambiguous
manner, despite the moderate Re, we make use of the fit function

L(λ)
Lx
=
(

lo

li

)β [1+ (λ/lo)
2

1+ (λ/li)2

]β/2
(3.1)

developed and tested by Thiesset et al. (2016) for exactly this purpose. The function
smoothly connects the asymptotes L= const. for λ� li and λ� lo (where L/Lx = 1)
with the fractal scaling L/Lx ∝ (lo/λ)

β for li . λ . lo in a way that closely agrees
with the data, as can be inferred from the representative fit in figure 3. Results
from applying (3.1) to the data are presented in figure 4(a–f ). While, predominantly
due to limited statistics, there is some scatter in figure 4(a,c,e) between individual
time steps, the time-averaged trends are robust and allow for firm conclusions.
Judging from the fact that li/η̂ is approximately constant in time (cf. figure 4a) and
indifferent to R̂ig (cf. figure 4b), it is concluded that li ∝ η̂, with li ≈ 10η̂. Similarly,
figure 4(c,d) suggests that lo ∝ ĥ and lo ≈ 0.6–0.8ĥ for the GCs as well as the WJ.
For the scaling exponent β in figure 4(e, f ), however, significant differences appear.
It is apparent – especially from the averages at late times in figure 4( f ) – that β
is a decreasing function of R̂ig. For the WJ, β takes significantly longer than for
the GCs to approach a constant value and, presumably due to confinement effects,
never reaches the theoretically predicted value of 1/3. The WJ grows fastest with
the strongest interface contortions (see figures 1a and 2a) and is therefore most
susceptible to interference due to the finite size of the computational domain. Based
on the above results, L/Lx ∝ (lo/li)

β ∝ (ĥ/η̂)β ∝ (Re3/4)β , and we note that β is the
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FIGURE 4. Results from applying the fit (3.1): inner cutoff li/η̂ (a,b), outer cutoff
lo/ĥ (c,d) and slope β (e, f ), along with δ/l̂Sk (g,h) and ∆/ĥ (i,j), plotted as function of t̃
(a,c,e,g,i), with black lines indicating a moving average over ≈ 10t̃, and of R̂ig averaged
over 100 6 t̃ 6 120 (b,d, f,h,j). The legend from figure 3(b) applies; the open symbols in
(d,h,j) relate to alternative normalizations on the right-hand axis. The dashed line in ( f )
represents a linear fit to the data with the parameters given in the figure.

decisive parameter in reducing L (or equivalently Aη). In fact, Re is larger for the GCs
than for the WJ as the constant forcing sin αB0 keeps increasing the volume flux uTh.
This also implies that the R̂ig trend of β cannot be an artefact of an increasingly
restricted scaling range as it is in fact becoming slightly larger. Even though the
linear fit in figure 4( f ) appears suggestive, it lacks a physical underpinning. With the
caveat that β(R̂ig = 0) is lower than the commonly accepted value of β ≈ 1/3 in this
case, it may however serve as an approximation at larger R̂ig.

The observation that lo ∝ ĥ might appear surprising, as one would expect the large-
scale cutoff in stratified (or sheared) flows to be determined by a buoyancy (shear)
scale. In fact, with R̂ig < 0.25 (cf. figure 1c), all flows considered here are ‘shear-
dominated’ according to the framework of Mater & Venayagamoorthy (2014). In this
regime, the largest scales are of the order of the shear scale l̂Sk = (k̂1/2/Ŝ), where k
is the turbulent kinetic energy. However, from the open symbols in figure 4(d), it
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FIGURE 5. (a) Schematic of the anisotropic interface geometry. The shaded blue area
represents a filter and the dashed blue line the filtered interface. (b) The ratio l̂Sk/ĥ as
a function of R̂ig (filled symbols) along with a linear fit to the data (dashed line and fit
parameters). Also shown on the right-hand axis is the ratio of r.m.s. velocity fluctuations
ŵrms/ûrms (open symbols).

becomes obvious that l̂Sk is not the proper normalization for lo. In addition to the
fit results already discussed, the length scale δ, which characterizes the wall-normal
fluctuations of the interface position zi, is plotted in figure 4(g,h). It is defined by
δ = [(1/L) ∫ (zi(s)− 〈zi〉)2 ds

]1/2, with s denoting a curvilinear coordinate that runs
along the TNTI. From the results in figure 4(g,h), there can be little doubt that δ(Rig)

scales on l̂Sk and not ĥ. In contrast, the scale ∆, which is designed to characterize
the streamwise extent of interface convolutions by measuring the mean streamwise
distance of the zero crossings of the function zi − 〈zi〉, is seen to scale on ĥ (see
figure 4i,j). Hence, there is an anisotropy in the scaling relations, the implications of
which we will discuss in the following.

4. Discussion

The situation at the interface is sketched in figure 5(a). The different scalings of
δ and ∆ observed above suggest that eddies are distorted such that they produce
convolutions whose size in x is approximately ĥ but that are limited to l̂Sk in z. The
latter is consistent with the aforementioned shear cutoff and corresponds to the scaling
expected in a homogeneous shear flow (Pope 2000). However, the finite extent of
the shear layer, which is ∝ĥ, is seen to become relevant in the streamwise direction.
This is consistent with the fact that the wavelength of the Kelvin–Helmholtz instability
active here scales with the thickness of the shear layer (Schmid & Henningson 2000).

It is noteworthy that no comparable scaling anisotropy was detected in related
studies on turbulent jets (Mistry et al. 2016) or boundary layers (e.g. Corrsin &
Kistler 1954). In fact, this is not surprising since to a first approximation lSk ∝ l∗

(where l∗ is a transverse length scale of the jet or the boundary layer thickness) in
these flows with no additional dependence on Ri.

With the above results, we have δ/∆∝ l̂Sk/ĥ, which is smaller than 1 in all cases,
as figure 5(b) shows. In this case, the filter width at which interface convolutions
will be removed is set by their streamwise extent, as the sketch in figure 5(a)
illustrates, which is consistent with lo∝ ĥ from figure 4(c,d). The results in figure 5(b)
indicate that the anisotropy implied by the different scaling relations in different
directions becomes more pronounced with increasing R̂ig. We further note that from
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FIGURE 6. (a) Illustration of the construction of the model fractal. (b) Sample fractals
after five iterations; darker shades of blue indicate increasing iterations for r = 0.3.
(c) Normalized length Λ/Λ0 for the two fractals (symbols) and predictions from (4.3)
(lines).

the definition of l̂Sk, it follows that l̂Sk = k̂1/2/S = k̂1/2/(û/ĥ) = ĥk̂1/2/û, such that
the ratio plotted in figure 5(b) is equivalent to the turbulent intensity k̂1/2/û. Also
included in figure 5(b) is the ratio of root mean square (r.m.s.) velocity fluctuations
in the wall-normal and streamwise directions. This ratio decreases much slower with
R̂ig than l̂Sk/ĥ or the turbulence intensity. Therefore, it follows that the decrease in
l̂Sk/ĥ is not predominantly related to increased anisotropy caused by the suppression
of wall-normal velocity fluctuation due to the stable stratification. It is rather that
– even as shear increases with increasing R̂ig (cf. the discussion of figure 1) – the
flow becomes less efficient in producing turbulent fluctuations, resulting in lower
turbulence intensities and thus lower l̂Sk/ĥ.

In the following, we will assess the effect of this disparity in length scales on the
fractal slope β by replicating the geometry of the TNTI by a simple model fractal.
The construction principle for the fractal curve is depicted in figure 6(a). At iteration
n (represented by the grey line), the curve consists of N line segments with length ln,
such that its total length is Λn =Λ(ln)=Nln. At the next iteration (blue line), a new
point is introduced at a distance rln from the centre of ln, where r is an anisotropy
parameter, and it follows that

ln+1 =
[(

ln

2

)2

+ (rln)
2

]1/2

= ln

2
m, (4.1)

with the abbreviation m = (1 + 4r2)1/2. Alternating the side at which the new point
is placed for consecutive line segments, as is done for the two sample fractals in
figure 6(b), ensures that the mean position of the curve is preserved. With (4.1), we
find that Λn+1 = 2Nln+1 =Nlnm, and the fractal scaling from

Λ(ln+1)

Λ(ln)
=m=

(
ln

ln+1

)βm

=
(

2
m

)βm

, (4.2)

with βm= f (m) denoting the fractal exponent of the model. Solving (4.2) for βm yields

βm = ln m

ln
2
m

, (4.3)

which is also confirmed by the plot of Λ/Λ0 versus ln/l0 in figure 6(c). From
figure 6(b,c), it also becomes clear that lower values of r, i.e. stronger anisotropy,
lead to lower fractal slopes βm, similar to what has been observed in figure 4.
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FIGURE 7. The slope β as a function of the ratio l̂Sk/ĥ averaged over 100 < t̃ < 120
(filled symbols), with error bars indicating the full range of the data in that period. The
open symbol marks the value of β = 1/3 for the unstratified case. The lines represent βm

according to (4.3) with r=Cl̂Sk/ĥ and different values of C.

If the decrease of β is in fact related to the increasing degree of anisotropy
witnessed in figure 5(b), it should now be possible to find a proportionality constant
r = Cl̂Sk/ĥ of order unity, such that β(l̂Sk/ĥ) ≈ βm(r). Indeed, choosing C = 1 yields
reasonable agreement between β and βm, as evidenced by the plot in figure 7. We
recall that β obtained from the present simulations for the WJ is lower than the
established value of ≈1/3, which is also included in figure 7. The correspondence
between the data and the simple model is even better if this value is adopted along
with C= 0.93.

It should be noted that in deriving the model in its present form, it was assumed
that r, and hence the scaling anisotropy is independent of scale. Since results for
both δ and lo are dominated by the largest scales, this is not strictly implied by the
data. As outlined in the discussion of figure 5(b), the anisotropy of the TNTI is not
directly related to anisotropy in the velocity field. It is rather a consequence of the
fact that the streamwise and wall-normal directions have different characteristic length
scales. Hence, the assumption of scale invariance of r is not necessarily inconsistent
with Kolmogorov’s hypothesis of small-scale isotropy. For a definitive answer as to
whether r= const. is in fact applicable even when the scaling range is large, data at
significantly higher Re would be required. In any case, a potential scaling transition
can easily be accounted for in the model by rendering r a function of the scale,
essentially resulting in a multifractal object.

Moreover, if β → 0, then Aη/A0 → 1, and from (1.1) vn is no longer amplified
by interface convolutions. The local entrainment velocity is dominated by viscous
processes at small thresholds (e.g. Holzner & Lüthi 2011), and hence entrainment
reduces to pure diffusion in this limit such that E→0. Consistently, from extrapolating
the direct measurements (figure 4d), as well as the model (figures 5b and 7), this
limit is approached for R̂ig > 0.15–0.18 in our data, which (from figure 1c) relates to
Ri≈ 0.2. We note that this value is significantly lower than the value of 0.8 predicted
by the fit based on experimental data by Turner (1986). Presumably this is related to
non-equilibrium effects in the experiment, but we reserve a detailed discussion for a
future publication in order to limit the scope of the present paper.

5. Concluding remarks

Recent studies link the reduction of entrainment with increasing stratification in
gravity currents to a decrease of the surface area Aη of the TNTI. Here, we examined
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the multiscale properties of this effect using DNS of flows in a range from unstratified
to strongly stratified conditions characterized by the Richardson number R̂ig. It was
shown that the reduction of Aη with increasing R̂ig is linked to a decrease in the
fractal scaling exponent β, while the inner and outer cutoffs of the scaling regime
remain largely unaffected. Our results further show that interface convolutions scale
differently in the streamwise and wall-normal directions. The former scales on the bulk
scale ĥ consistent with the underlying instability mechanism, while the latter scales
on the shear scale l̂Sk, which is the large-scale cutoff in shear-dominated flows such
as the present ones. This went unnoticed in previous studies since the two different
scalings coincide in neutrally buoyant flows. The ratio l̂Sk/ĥ and hence the anisotropy
of the bulges were seen to decrease with increasing R̂ig. It was finally found that a
simple fractal model based on this finding convincingly predicts the dependence of β
on R̂ig. By allowing Aη to be parametrized in terms of basic turbulence quantities,
these novel results may play an important role in modelling turbulent entrainment.
Moreover, it appears likely that the present findings might – at least in part – also
transfer to other problems such as the deepening of the wind-mixed layer (Pollard,
Rhines & Thompson 1972).
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